Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein
نویسندگان
چکیده
CREB-binding protein (CBP) is a transcriptional co-activator which is required by many transcription factors. Rubinstein-Taybi syndrome (RTS), which is an autosomal dominant syndrome characterized by abnormal pattern formation, is associated with mutations in the human CBP gene. Various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp-deficient mice, but some features of RTS such as cardiac anomalies do not, suggesting that some symptoms of RTS are caused by a dominant-negative mechanism. Here we report the characterization of homozygous Cbp-deficient mice. Homozygous mutants died around E10.5-E12.5, apparently as a result of massive hemorrhage caused by defective blood vessel formation in the central nervous system, and exhibited apparent developmental retardation as well as delays in both primitive and definitive hematopoiesis. Cbp-deficient embryos exhibited defective neural tube closure which was similar to those observed in twist-deficient embryos. However, a decrease in the level of twist expression was not observed in Cbp-deficient embryos. Anomalous heart formation, a feature of RTS patients and mice mutated in the CBP-related molecule, p300, was not observed in Cbp-deficient embryos. Since both Cbp and p300 are ubiquitously expressed in embryonic tissues including the developing heart, these results suggest that cardiac anomalies observed in RTS patients may be caused by a dominant negative effect of mutant CBP.
منابع مشابه
O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملImpaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein.
CREB, the cAMP response element binding protein, is a key transcriptional regulator of a large number of genes containing a CRE consensus sequence in their upstream regulatory regions. Mice with a hypomorphic allele of CREB that leads to a loss of the CREBalpha and delta isoforms and to an overexpression of the CREBbeta isoform are viable. Herein we report the generation of CREB null mice, whic...
متن کاملMouse embryogenesis requires the tissue factor extracellular domain but not the cytoplasmic domain.
Recent studies indicate that tissue factor (TF) acts in embryogenesis, metastasis, and angiogenesis. Three independent groups showed that targeted disruption of the murine TF (mTF) gene results in 90% lethality of mTF null embryos at embryonic days 9. 5-10.5. We have demonstrated that expression of wild-type human TF (hTF) from a minigene rescues the embryonic lethality of mTF null embryos. To ...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملEfficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 95 شماره
صفحات -
تاریخ انتشار 2000